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Abstract

Every year more than 13 million deaths worldwide are due to
environmental pollutants, and approximately 24% of diseases are caused
by environmental exposures that might be averted through preventive
measures. Rapidly growing evidence has linked environmental pollutants
with epigenetic variations, including changes in DNA methylation, histone
modifications and microRNAs.

Environ mental chemicals and epigenetic changes All of these
mechanisms are likely to play important roles in disease aetiology, and
their modifications due to environmental pollutants might provide further
understanding of disease aetiology, as well as biomarkers reflecting
exposures to environmental pollutants and/or predicting the risk of future
disease. We summarize the findings on epigenetic alterations related to
environmental chemical exposures, and propose mechanisms of action by
means of which the exposures may cause such epigenetic changes. We
discuss opportunities, challenges and future directions for future
epidemiology research in environmental epigenomics. Future
investigations are needed to solve methodological and practical
challenges, including uncertainties about stability over time of epigenomic
changes induced by the environment, tissue specificity of epigenetic
alterations, validation of laboratory methods, and adaptation of
bioinformatic and biostatistical methods to high-‐‑throughput epigenomics.
In addition, there are numerous reports of epigenetic modifications arising
following exposure to environmental toxicants, but most have not been
directly linked to disease endpoints. To complete our discussion, we also
briefly summarize the diseases that have been linked to environmental
chemicals-‐‑related epigenetic changes.
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Background

More than 13 million deaths every year are due to environmental
pollutants, and as much as 24% of diseases are estimated to be caused by
environmental exposures that can be averted.1 In a screening promoted by
the United States Center for Disease Control and Prevention, 148 different
environmental chemicals were found in the blood and urine from the US
population, indicating the extent of our exposure to environmental
chemicals.2 Growing evidence suggests that environmental pollutants may
cause diseases via epigenetic mechanism-‐‑regulated gene expression
changes.3,4 Dynamic chromatin remodelling is required for the initial
steps in gene transcription, which can be achieved by altering the
accessibility of gene promoters and regulatory regions.5 Epigenetic
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factors, including DNA methylation, histone modifications and microRNAs
(miRNAs) (Figure 1), participate in these regulatory processes, thus
controlling gene expressions.6,7 Changes in these epigenetic factors have
been shown to be induced by exposure to various environmental
pollutants, and some of them were linked with different diseases.8–10 In
this review, we summarize the findings linking environmental chemical
exposures with epigenetic alterations, provide some evidence linking such
epigenetic changes with diseases (Table 1), and discuss the challenges and
opportunities of environmental epigenomics in epidemiologic studies.

Figure 1
Transcriptional regulation at
the epigenetic level.
Epigenetic mechanisms,
including DNA methylation,
histone modifications and
miRNAs, regulate chromatin
compaction and gene
expression. DNA
methylation at CpG sites
usually suppresses gene

expression. Histones are globular proteins that undergo
posttranslational modifications, such as Ac, methylation and
phosphorylation, thus influencing chromatin structure and gene
expression. Active genes are usually characterized by low DNA
methylation and highly acetylated chromatin configuration that
allow access to transcription factors. miRNAs are a set of small,
non-‐‑protein-‐‑coding RNAs that negatively regulate expression of
target genes at the posttranscriptional level by binding to 3′-‐‑
untranslated regions of target mRNAs

Table 1
Effects of environmental
chemicals on epigenetic

changes

Epigenetic factors

DNA  methylation

DNA methylation, a naturally occurring modification that involves the
addition of a methyl group to the 5′ position of the cytosine ring, is the
most commonly studied and best understood epigenetic mechanism.11 In
the human genome, it predominantly occurs at cytosine–guanine
dinucleotide (CpG) sites, and serves to regulate gene expression and
maintain genome stability.12

Environmental studies have shown distinct DNA methylation abnormalities.
One commonly reported alteration is an overall genome-‐‑wide reduction in
DNA methylation content (global hypomethylation) that may lead to
reactivation of transposable elements and alter the transcription of
otherwise silenced adjacent genes.13,14 Global hypomethylation is
associated with genomic instability and an increased number of mutational
events.15–18 There are approximately 1.4 million Alu repetitive elements
(sequences containing a recognition site for the restriction enzyme AluI)19
and a half a million long interspersed nucleotide (LINE-‐‑1) elements in the
human genome that are normally heavily methylated.20 More than one-‐‑
third of DNA methylation occurs in repetitive elements.20 Because of their
high representation throughout the genome, LINE-‐‑1 and Alu have been
used as global surrogate markers for estimating the genomic DNA
methylation level in cancer tissues,20–22 although recent data show lack of
correlation with global methylation in normal tissues, such as peripheral
blood.23 Other types of abnormalities that can be induced by
environmental pollutants are hyper-‐‑ or hypo-‐‑methylation of specific genes
or regions, potentially associated with aberrant gene transcription.24–27
DNA methylation alterations that directly affect gene expression often
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occur in the CpG sites located in the promoter regions of the genes.
Recent evidence has shown that differentially methylated sites in various
cancer tissues are enriched in sequences, termed ʻ‘CpG island shoresʼ’, up
to 2 kb distant from the transcription start site.28 However, to date, gene-‐‑
specific DNA methylation alterations induced by environmental exposures
have been mostly investigated in gene promoter regions. CpG island
shores are clearly worthy of further investigation in relation to
environmental exposures, but whether they hold such importance in a
non-‐‑cancer setting remains to be determined.

Histone  modifications

In humans, protection and packaging of the genetic material are largely
performed by histone proteins, which also offer a mechanism for
regulating DNA transcription, replication and repair.29 Histones are
nuclear globular proteins that can be covalently modified by acetylation
(Ac), methylation, phosphorylation, glycosylation, sumoylation,
ubiquitination and adenosine diphosphate (ADP) ribosylation,30,31 thus
influencing chromatin structure and gene expression.32,33 The most
common histone modifications that have been shown to be modified by
environmental chemicals are Ac and methylation of lysine residues in the
amino terminal of histone 3 (H3) and H4. Histone Ac, with only a single
acetyl group added to each amino acid residue usually, increases gene
transcriptional activity;34–37 whereas histone methylation (Me), found as
mono (Me), di-‐‑methyl (Me2), and tri-‐‑methyl (Me3) group states38 can
inhibit or increase gene expression depending on the amino acid position
that is modified.39–41

miRNAs

miRNAs are short single-‐‑stranded RNAs of approximately 20–24
nucleotides in length that are transcribed from DNA but not translated into
proteins. miRNAs negatively regulate expression of target genes at the
post-‐‑transcriptional level by binding to 3′-‐‑untranslated regions of target
mRNAs.42 Each mature miRNA is partially complementary to multiple
target mRNAs and directs the RNA-‐‑induced silencing complex (RISC) to
identify the target mRNAs for inactivation.43 miRNAs are initially
transcribed as longer primary transcripts (pri-‐‑miRNAs) and processed first
by the RNase enzyme complex, and then by Dicer, leading to incorporation
of a single strand into the RISC. miRNAs guide RISC to interact with mRNAs
and determine post-‐‑transcriptional repression. miRNAs are involved in the
regulation of gene expression through the targeting of mRNAs during cell
proliferation, apoptosis, control of stem cell self renewal, differentiation,
metabolism, development and tumour metastasis.44,45 Compared with
other mechanisms involved in gene expression, miRNAs act directly before
protein synthesis and may be more directly involved in fine-‐‑tuning of gene
expression or quantitative regulation.46,47 Moreover, miRNAs also play
key roles in modifying chromatin structure and participating in the
maintenance of genome stability.48 miRNAs can regulate various
physiological and pathological processes, such as cell growth,
differentiation, proliferation, apoptosis and metabolism.42,49 More than
10 000 miRNAs have been reported in animals, plants and viruses by using
computational and experimental methods in miRNA-‐‑related public
databases. The aberrant expression of miRNAs has been linked to various
human diseases, including Alzheimerʼ’s disease, cardiac hypertrophy,
altered heart repolarization, lymphomas, leukaemias, and cancer at several
sites.50–66

Environmental pollutants and epigenetic alterations

Metals

Heavy metals are widespread environmental contaminants and have been
associated with a number of diseases, such as cancer, cardiovascular
diseases, neurological disorders and autoimmune diseases.67,68 In recent
years, there has been an increasing appreciation of the roles of molecular
factors in the aetiology of heavy metal-‐‑associated diseases.69–71 Several
studies showed that metals act as catalysts in the oxidative deterioration
of biological macromolecules.72 Metal ions induce reactive oxygen species
(ROS), and thus lead to the generation of free radicals.72,73 ROS

accumulation can affect epigenetic factors.74–79 Growing data have linked
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accumulation can affect epigenetic factors.74–79 Growing data have linked
epigenetic alterations with heavy metal exposure.
Arsenic

Evidence has been rapidly increasing that exposure to arsenic (As) alters
DNA methylation both globally and in the promoter regions of certain
genes. Upon entering the human body, inorganic As is methylated for
detoxification. This detoxification process uses S-‐‑adenosyl methionine
(SAM), which is a universal methyl donor for methyltransferases including
DNA methyltransferases (DNMTs) that determine DNA methylation. Thus,
it has been shown that As exposure leads to SAM insufficiency and
decreases the activity of DNMTs due to the reduction of their substrate. In
addition, As has also been shown to decrease DNMT gene expression.80
These As-‐‑induced processes may all contribute to global DNA
hypomethylation. Arsenic exposure was shown to induce global
hypomethylation in a dose-‐‑dependent manner in several in vitro
studies.80–83 Further, rats and mice exposed to As for several weeks
exhibited global hypomethylation in hepatic DNA.84–87 Nonetheless,
evidence in humans is still limited and not completely consistent. In a
cross-‐‑sectional study of 64 subjects, As level in contaminated water was
associated with global DNA hypermethylation in blood mononuclear
cells.88 A global dose-‐‑dependent hypermethylation of blood DNA was
observed in Bangladeshi adults with chronic As exposure.89

Arsenic exposure has also been associated with gene-‐‑specific hyper-‐‑ or
hypo-‐‑methylation in both experimental settings and human studies.85,90–
101 As exposure has been shown to induce dose-‐‑dependent promoter
hypermethylation of several tumour suppressor genes, such as p15, p16,
p53 and DAPK, in vitro and in vivo.91,93,98,101,102 Furthermore, As
exposure-‐‑related up-‐‑regulation of ER-‐‑alpha, c-‐‑myc and Ha-‐‑ras1 gene
expression was linked to their promoter hypomethylation in cell lines94,95
and animal studies.84,85,97 Evidence in humans is rapidly growing. Toenail
As concentration was positively associated with RASSF1A and PRSS3
promoter methylation levels in bladder tumours.100 Promoter
hypermethylation in these two genes was associated with As-‐‑induced
invasive lung tumours compared with non-‐‑invasive tumours.100 Promoter
hypermethylation of DAPK was observed in human uroepithelial cells
exposed to As,90 as well as in tumours from 13 of 17 patients living in
As-‐‑contaminated areas relative to 8 of 21 patients living in As non-‐‑
contaminated areas.99 Increased DNA methylation of the p16 promoter
was observed in arseniasis patients when compared with people with no
history of As exposure.101

Arsenic exposure has also been shown to cause alterations in histone
modifications. The earliest evidence on As-‐‑induced histone acetylation
reductions was in Drosophila.103 Trivalent As has recently been linked to
reduced H3 and H4 lysine 16 (H4K16) acetylation in human bladder
epithelial cells.104 On the other hand, trivalent As exposure has also been
shown to increase histone acetylation, which was shown to up-‐‑regulate
genes related to apoptosis or cell stress response.105,106 Ramirez et al.
have reported that As could cause global histone acetylation by inhibiting
the activity of histone deacetylases (HDACs).107 Together, these studies
provide evidence that histone acetylation can be dysregulated by As
exposure. Early in 1983, As was also shown to induce methylation changes
in H3 and H4 in Drosophila.103 Similar results on H3 were seen in
Drosophila Kc 111 cell several years later.108,109 In recent years, in
mammalian cells, arsenite (AsIII) exposure has been associated with
increased H3 lysine 9 dimethylation (H3K9me2) and H3 lysine 4
trimethylation (H3K4me3), and decreased H3 lysine 27 trimethylation
(H3K27me3).110,111 As was shown to induce apoptosis by up-‐‑regulation
of phosphorylated H2AX112 and cause H3 phosphorylation, which may
play important roles in the up-‐‑regulation of the oncogenes.106

Exposure of human lymphoblast cell line TK-‐‑6 to arsenite exhibited global
increases in miRNA expression.113 Arsenic trioxide (As2O3) has been used
as a pharmacological treatment in acute promyelocytic leukaemia.114 Cao
et al.115 demonstrated that numerous miRNAs were up-‐‑regulated or
down-‐‑regulated in T24 human bladder carcinoma cells exposed to As2O3.
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In particular, miRNA-‐‑19a was substantially decreased, resulting in cell
growth arrest and apoptosis. The As-‐‑related changes in miRNA expression
were shown to be reversible when the exposure was removed.115

Nickel

Nickel has been proposed to increase chromatin condensation and trigger
de novo DNA methylation of critical tumour suppressor or senescence
genes.116 In Chinese hamster G12 cells transfected with the Escherichia
coli guanine phosphoribosyl transferase (gpt) gene, nickel was shown to
induce hypermethylation and inhibit the expression of the transfected gpt
gene.117 An animal study has further shown that nickel induced DNA
hypermethylation, altered heterochromatin states and caused gene
inactivation, eventually leading to malignant transformation.118
Govindarajan et al.119 have observed DNA hypermethylation of p16 in
nickel-‐‑induced tumours of wild-‐‑type C57BL/6 mice, as well as in mice
heterozygous for the tumour suppressor p53 gene injected with nickel
compound.

Nickel may cause diseases also via affecting histone modifications.
Evidence on nickel-‐‑induced histone modifications includes increases of
H3K9 dimethylation, loss of histone acetylation in H2A, H2B, H3 and H4,
and increases of the ubiquitination in H2A and H2B.116,120–127 An
increase in H3K9 dimethylation and a decrease in H3K4 methylation and
histone acetylation was found in the promoter of the gpt transgene in G12
cells exposed to nickel.116,123,128 In mouse PW cells and human cells
treated with the HDAC inhibitor trichostatin A, nickel showed a lower
capacity to induce malignant transformation.129 This finding suggested
that gene silencing mediated by histone deacetylation may play a critical
role in nickel-‐‑induced cell transformation.129 In addition, nickel has also
been shown to induce a loss of histone methylation in vivo and decreased
activity of histone H3K9 demethylase in vitro.123 Nickel also suppresses
histone H4 acetylation in vitro in both yeast and mammalian cells.130,131
Nickel can induce H3 phosphorylation, specifically in serine 10 (H3S10) via
activation of the c-‐‑jun N-‐‑terminal kinase/stress-‐‑activated protein kinase
pathway.132

Cadmium

Cadmium (Cd) has been shown to alter global DNA methylation.133
Takiguchi et al.134 demonstrated that Cd inhibits DNMTs and initially
induces global DNA hypomethylation in vitro (TRL1215 rat liver cells).
However, prolonged exposure was shown to lead to DNA hypermethylation
and enhanced DNMTs activity in the same experiment.134 Cd can also
decrease DNA methylation in proto-‐‑oncogenes and promote oncogenes
expression that can result in cell proliferation.133,134

Transcriptional and post-‐‑transcriptional gene regulation is critical in
responses to Cd exposure, in which miRNAs may play an important
role.135,136 Bollati et al.137 have recently demonstrated that increased
expression of miR-‐‑146a in peripheral blood leucocytes from steel workers
was related to inhalation of Cd-‐‑rich air particles. miRNA-‐‑146a expression
is regulated by the transcription factor nuclear factor-‐‑kappa B, which
represents an important causal link between inflammation and
carcinogenesis.138

Other metals

Mercury (Hg) is widely present in various environmental media and foods
at levels that can adversely affect humans and animals. Exposure to Hg
has been associated with brain tissue DNA hypomethylation in the polar
bear.139 Arai et al.140 have studied the effects of Hg on DNA methylation
status in mouse embryonic stem cells. After 48 or 96 h of exposure to the
chemical, they observed hypermethylation of Rnd2 gene in Hg-‐‑treated
mouse embryonic stem cells.

Lead is among the most prevalent toxic environmental metals, and has
substantial oxidative properties. Long-‐‑term exposure to lead was shown
to alter epigenetic marks. In the Normative Aging Study, LINE-‐‑1
methylation levels were examined in association with patella and tibia lead
levels, measured by K-‐‑X-‐‑Ray fluorescence. Patella lead levels were



2/18/2016 Environmental chemical exposures and human epigenetics

https://ije.oxfordjournals.org/content/41/1/79.full 6/33

associated with reduced LINE-‐‑1 DNA methylation. The association between
lead exposure and LINE-‐‑1 DNA methylation may have implications for the
mechanisms of action of lead on health outcomes, and also suggests that
changes in DNA methylation may represent a biomarker of past lead
exposure.141 In addition, Pilsner et al.142 characterized genomic DNA
methylation in the lower brain stem region from 47 polar bears hunted in
central East Greenland between 1999 and 2001. They have reported an
inverse association between cumulative lead measures and genomic DNA
methylation level.

Hexavalent chromium [Cr(VI)] is a mutagen and carcinogen that has been
linked to lung cancer and other adverse health effects in occupational
studies. Kondo et al.143 found p16 and hMLH1 hypermethylation in lung
cancer patients with past chromate exposure.144 In vitro experiments on
cells exposed to binary mixtures of benzo[a]pyrene (B[a]P) and chromium
have shown that B[a]P activates Cyp1A1 transcriptional responses
mediated by the aryl hydrocarbon receptor (AhR), whereas chromium
represses B[a]P-‐‑inducible AhR-‐‑mediated gene expression145,146 by
inducing cross-‐‑links of histone deacetylase 1–DNA methyltransferase 1
(HDAC1–DNMT1) complexes to the Cyp1A1 promoter chromatin and
inhibit histone marks, including phosphorylation of histone H3 Ser-‐‑10,
trimethylation of H3 Lys-‐‑4 and various acetylation marks in histones H3
and H4. HDAC1 and DNMT1 inhibitors or depletion of HDAC1 or DNMT1
with siRNAs blocked the chromium-‐‑induced transcriptional repression by
decreasing the interaction of these proteins with the Cyp1A1 promoter
and allowing histone acetylation to proceed. By inhibiting Cyp1A1
expression, chromium stimulate the formation of B[a]P DNA adducts.
These findings may link histone modifications to chromium-‐‑associated
developmental and carcinogenic outcomes.147 Chromate exposure of
human lung A549 cells has been shown to increase the global levels of di-‐‑
and tri-‐‑methylated histone H3 lysine 9 (H3K9) and lysine 4 (H3K4), but
decrease tri-‐‑methylated histone H3 lysine 27 (H3K27) and di-‐‑methylated
histone H3 arginine 2 (H3R2). Most interestingly, H3K9 dimethylation was
enriched in the human MLH1 gene promoter following chromate exposure,
and this was correlated with decreased MLH1 mRNA expression. Chromate
exposure increased the protein as well as mRNA levels of G9a, a histone
methyltransferase that specifically methylates H3K9. This Cr(VI)-‐‑induced
increase in G9a may account for the global elevation of H3K9
dimethylation. Furthermore, supplementation with ascorbate, the primary
reductant of Cr(VI) and also an essential cofactor for the histone
demethylase activity, partially reversed the H3K9 dimethylation induced by
chromate. These results suggest that Cr(VI) may target histone
methyltransferases and demethylases, which in turn affect both global and
gene promoter-‐‑specific histone methylation, leading to the silencing of
specific tumour suppressor genes.148

Recent investigations have demonstrated that aluminum exposure can
alter the expression of a number of miRNAs. miR-‐‑146a in human neural
cells was up-‐‑regulated after treatment with aluminium sulphate. Up-‐‑
regulation of miR-‐‑146a corresponded to the decreased expression of
complement factor H, a repressor of inflammation.149 In addition, a study
on aluminium-‐‑sulphate-‐‑treated human neural cells in primary culture has
shown increased expression of a set of miRNAs, including miR-‐‑9, miR-‐‑
125b and miR-‐‑128.150 The same miRNAs were also found to be up-‐‑
regulated in brain cells of Alzheimer patients, suggesting that aluminum
exposure may induce genotoxicity via miRNA-‐‑related regulatory
elements.150

Pesticides

Growing evidence suggests that epigenetic events can be induced by
pesticide exposures.28,151–153 Animal models have shown that exposure
to some pesticides, such as vinclozolin and methoxyclor, induces heritable
alterations of DNA methylation in male germline associated with testis
dysfunction,154–156 or affects ovarian function via altered methylation
patterns.157 Decreased methylation in the promoter regions of c-‐‑jun and
c-‐‑myc and increased levels of their mRNAs and proteins were found in
livers of mice exposed to dichloro-‐‑ and trichloro-‐‑acetic acid.158,159
Dichlorvos has been demonstrated to induce DNA methylation in multiple
tissues in an animal toxicity study.160 DNA methylation in repetitive
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tissues in an animal toxicity study.160 DNA methylation in repetitive
elements in blood DNA was inversely associated with increased levels of
plasma pesticide residues and other persistent organic pollutants in an
Arctic population,161 a finding later confirmed in a similar study in a
Korean population.162 Whether aberrant DNA methylation represents the
link between pesticides and risks of pesticide-‐‑related disease, including
the excess of cancer risk observed in some epidemiology studies,163–168
remains to be determined.

Dieldrin, a widely used organochlorine pesticide, has been shown to
increase acetylation of core histones H3 and H4 in a time-‐‑dependent
manner. Histone acetylation was induced within 10 min of dieldrin
exposure, suggesting that histone hyperacetylation is an early event in
dieldrin-‐‑induced diseases. Treatment with anacardic acid, a histone
acetyltransferase inhibitor, decreased dieldrin-‐‑induced histone
acetylation.169 Dieldrin was further shown to induce histone
hyperacetylation in the striatum and substantia nigra in mouse models,
suggesting the roles for histone hyperacetylation in dieldrin-‐‑induced
dopaminergic neuronal degeneration.170

Air  pollution

Exposure to particulate matter (PM) of ambient air pollution has been
associated with increased morbidity and mortality related to
cardiovascular and respiratory diseases.171,172 Black carbon, a component
of PM derived from vehicular traffic, has been linked to decreased DNA
methylation in LINE-‐‑1 repetitive elements in 1097 blood DNA samples of
elderly men in the Boston area. Additional evidence for PM effects on DNA
methylation stemmed from an investigation of workers in a steel plant
with well-‐‑characterized exposure to PM with diameters of <10 µm (PM10).
Methylation of inducible nitric oxide synthase gene promoter region was
decreased in blood samples of individuals exposed to PM10 after 3 days of
work in the foundry when compared with baseline.173 In the same study,
methylation of Alu and LINE-‐‑1 was negatively related to long-‐‑term
exposure to PM10.173 In contrast, an animal experiment on mice exposed
to air particles collected from a steel plant showed global DNA
hypermethylation in sperm genomic DNA, a change that persisted after
removal of environmental exposure.174 Inhaled diesel exhaust particlesʼ’
exposure and intranasal Aspergillus fumigatus induced hypermethylation
of several sites of the interferon gamma (IFNγ) promoter and
hypomethylation at a CpG site of the IL-‐‑4 promoter in mice. Altered
methylation of promoters of both genes was correlated with changes in
IgE levels.175,176

We recently also associated PM exposure with histone modifications in the
above-‐‑mentioned steel workers with high exposure level to PM.177 In this
study, exposure duration (years of work in the foundry) was associated
with increased H3K4me2 and H3K4ac in blood leucocytes.177 In the same
study, we showed that exposure to metal-‐‑rich PM induced rapid changes
in the expression of two inflammation-‐‑related miRNAs, i.e. miR-‐‑21 and
miR-‐‑222, measured in peripheral blood leucocytes.178 Using microarray
profiling, Jardim et al.172 have shown extensive alterations of miRNA
expression profiles in human bronchial epithelial cells treated with diesel
exhaust particles. Out of 313 detected miRNAs, 197 were either up-‐‑ or
down-‐‑regulated by at least 1.5-‐‑fold.172

Benzene

Benzene is an environmental chemical that has been associated with
increased risk of haematological malignancies, particularly with acute
myeloid leukaemia and acute nonlymphocytic leukaemia.179–184 Benzene
ranks among the top 20 chemicals for production volume in USA.185 Our
results from a study of police officers and gas-‐‑station attendants have
shown that low-‐‑dose exposure to airborne benzene is associated with
alterations in DNA methylation in blood DNA of healthy subjects that
resemble those found in haematological malignancies,165–168,186
including hypomethylation of LINE-‐‑1 and Alu repetitive elements,
hypermethylation of p15 tumour suppressor gene and hypomethylation of
MAGEA1 (melanoma-‐‑associated antigen 1 gene). Consistently, reductions
of global DNA methylation has been recently shown in human

lymphoblastoid cells treated with benzene metabolites.187 In vitro
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lymphoblastoid cells treated with benzene metabolites.187 In vitro
experiments have also shown that benzene exposure induces
hypermethylation of poly (ADP-‐‑ribose) polymerases-‐‑1 (PARP-‐‑1), a gene
involved in DNA repair.188

Bisphenol  A

Bisphenol A (BPA) is an endocrine disruptor with potential reproductive
effects, as well as a weak carcinogen associated with increased cancer risk
in adult life through fetal exposures.189,190 BPA is widely used as an
industrial plasticizer in epoxy resins for food and beverage containers,
baby bottles and dental composites.191 Dolinoy et al.192 reported that
periconceptional exposure to BPA shifted the coat colour distribution of
the viable yellow agouti (Avy) mouse offspring toward yellow by decreasing
CpG methylation in an intracisternal A particle (IAP) retrotransposon
upstream of the Agouti gene.193 In this animal model, the yellow-‐‑coat
phenotype is associated with increased cancer rates, as well as with
obesity and insulin resistance. In the same set of experiments, maternal
dietary supplementation, with either methyl donors like folic acid or the
phytoestrogen genistein, blunted the effect of BPA on IAP methylation and
prevented the coat colour change caused by BPA exposure.192 In pregnant
CD-‐‑1 mice treated with BPA, Bromer et al.194 found decreased methylation
and increased expression of the homeobox gene Hoxa10, which controls
uterine organogenesis. In breast epithelial cells treated with low-‐‑dose BPA,
gene expression profiling identified 170 genes with expression changes in
response to BPA, of which expression of lysosomal-‐‑associated membrane
protein 3 (LAMP3) was shown to be silenced due to DNA hypermethylation
in its promoter.195

In a recent study by Avissar-‐‑Whiting et al.,196 an elevated expression of
miR-‐‑146a was observed in BPA-‐‑treated placental cell lines and miR-‐‑146a
expression was associated with slower cell proliferation and higher
sensitivity to the bleomycin-‐‑induced DNA damage.

Dioxin

Dioxin is a compound that has been classified as a human carcinogen by
the International Agency for Research on Cancer. As dioxin is only a weak
mutagen, extensive research has been conducted to identify potential
mechanisms contributing to carcinogenesis. One proposed pathway to
carcinogenesis is related to the powerful dioxin-‐‑induced activation of
microsomal enzymes, such as CYP1B1, that might activate other
procarcinogen compounds to active carcinogen. The capability of dioxin to
induce CYP1B1 has been recently shown in vitro to depend on the
methylation state of the CYP1B1 promoter.197 Also, dioxin was shown to
reduce the DNA methylation level of Igf2 in rat liver.198 Recently,
alterations in DNA methylation at multiple genomic regions were identified
in splenocytes of mice treated with dioxin, a finding potentially related to
dioxin immunotoxicity.199 In a xenograft mouse model of hepatocellular
carcinoma, Elyakim et al.200 have also found that dioxin up-‐‑regulated
miR-‐‑191. In the same study, inhibition of miR-‐‑191 inhibited apoptosis
and decreased cell proliferation, suggesting that increased miR-‐‑191
expression may contribute to determine dioxin-‐‑induced carcinogenicity.

Hexahydro-1,3,5-trinitro-1,3,5-triazine  (RDX,  also  known  as  hexogen  or

cyclonite)

Hexahydro-‐‑1,3,5-‐‑trinitro-‐‑1,3,5-‐‑triazine (commonly known as RDX, the
British code name for Royal Demolition Explosive) is an explosive
polynitramine and common ammunition constituent used in military and
civil activities. Although most of this environmental pollutant is found in
soils, RDX and its metabolites are also found in water sources.201
Exposure to RDX and its metabolites could cause neurotoxicity,
immunotoxicity and cancers.202 Zhang et al.202 have recently evaluated
the effects of RDX on miRNA expression in mouse brain and liver. In this
study, out of 113 miRNAs, 10 were up-‐‑regulated and 3 were down-‐‑
regulated. Most of the miRNAs that showed altered expression, including
let-‐‑7, miR-‐‑17-‐‑92, miR-‐‑10b, miR-‐‑15, miR-‐‑16, miR-‐‑26 and miR-‐‑181, were
found to regulate toxicant-‐‑metabolizing enzymes, as well as genes related
to carcinogenesis and neurotoxicity.202
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Diethylstilbestrol

Diethylstilbestrol (DES) is a synthetic oestrogen that was used to prevent
miscarriages in pregnant women between the 1940s and the 1960s.203 A
moderate increase in breast cancer risk has been shown both in daughters
of women who were treated with DES during pregnancy, as well as in their
daughters.204 Hsu et al.205 have demonstrated that the expression of 82
miRNAs (9.1% of the 898 miRNAs evaluated) were altered in breast
epithelial cells when exposed to DES. In particular, the suppression of
miR-‐‑9-‐‑3 expression was accompanied by promoter hypermethylation of
the miR-‐‑9-‐‑3 coding gene in DES-‐‑treated epithelial cells.205

Chemicals  in  drinking  water

Chlorination by-‐‑products are formed as a result of the water chlorination
for anti-‐‑fouling purposes. Various chlorination by-‐‑products in drinking
water, such as triethyltin,206 chloroform207 and trihalomethanes,208 have
been questioned for potential adverse health effects.209 These chemicals
have been shown to induce certain epigenetic changes. Rats that were
chronically intoxicated with triethyltin in drinking water showed
development of cerebral oedema as well as an increase of
phosphatidylethanolamine-‐‑N-‐‑methyltransferase activities. This increased
methylation might be a compensatory mechanism for counteracting the
membrane damages induced by triethyltin.206 Chloroform, dichloroacetic
acid (DCA) and trichloroacetic acid (TCA), three liver and kidney
carcinogens, are by-‐‑products of chlorine disinfection found in drinking
water.210,211 Mice treated with DCA, TCA and chloroform show global
hypomethylation and increased expression of c-‐‑myc, a proto-‐‑oncogene
involved in liver and kidney tumours.207 Trihalomethanes (chloroform,
bromodichloromethane, chlorodibromomethane and bromoform) are
regulated organic contaminants in chlorinated drinking water. In female
B6C3F1 mouse liver, trihalomethanes demonstrated carcinogenic activity.
Chloroform and bromodichloromethane decreased the level of 5-‐‑
methylcytosine in hepatic DNA. Methylation in the promoter region of the
c-‐‑myc gene was reduced by the trihalomethanes, consistent with their
carcinogenic activity.208

Environmental epigenomics: challenges and opportunities for epidemiologic
studies

The studies reviewed in this article have demonstrated the potential
effects of environmental pollutants on the epigenome. Several of the
epigenomic changes observed in response to environmental exposures
might be mechanistically associated with susceptibility to diseases (Table
1). Further studies of epigenetic mechanisms in disease pathogenesis,
including the role of epigenetics in the developmental origins of health
and disease, their relationships with environmental exposures and the
pathways associated with the disease phenotype may help develop
preventive and therapeutic strategies.

Epigenetics  and  developmental  origins  of  health  and  disease

During embryogenesis, epigenetic patterns change dynamically to adapt
embryos to be fit for further differentiation.7 Two waves of epigenetic
reprogramming, which take place at the zygote stage and during
primordial germ cells formation, accompany mammalian development.212

Experiments on mice carrying the Avy have demonstrated that embryo life
is a window of exquisite sensitivity to the environment. In viable yellow
(Avy/a) mice, transcription originating in a IAP retrotransposon inserted
upstream of the agouti gene (A) causes ectopic expression of agouti
protein, resulting in yellow fur, obesity, diabetes and increased
susceptibility to tumours.213 BPA is a high-‐‑production-‐‑volume chemical
used in the manufacture of polycarbonate plastic. In utero or neonatal
exposure to BPA is associated with higher body weight, increased breast
and prostate cancer and altered reproductive function.

Additional experimental studies have suggested epigenetic mechanisms as
potential intermediates for the effects of prenatal exposures to pesticides
such as vinclozolin and methoxyclor,154 as well as of other conditions
such as nutritional supplies of methyl donors.192 Evidence has also been
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accumulating in humans. Investigations of candidate loci among
individuals prenatally exposed to poor nutrition during the Dutch famine
in 1944–45 indicate that epigenetic changes induced by prenatal
exposures may be common in humans, although they appear to be
relatively small and greatly dependent on the timing of the exposure
during gestation.214,215 Based on findings of changes in DNA methylation
in subjects exposed to the Dutch famine, Heijmans et al.216 have
suggested that the epigenome may represent a molecular archive of the
prenatal environment, via which the in-‐‑utero environment may produce
serious ramifications on health and disease later in life. Terry et al.217
found that prenatal exposure to cigarette smoke was associated with
increased overall blood DNA methylation level in adulthood. Other
examples include decreased LINE-‐‑1 and Sat 2 methylation level in adults
and children prenatally exposed to smoking,218 and global DNA
hypomethylation in newborns with utero exposures of maternal
smoking.219 In addition to these DNA methylation changes, Maccani et
al.220 have recently observed that miR-‐‑16, miR-‐‑21 and miR-‐‑146a were
down-‐‑regulated in cigarette smoke-‐‑exposed placentas compared to
controls.
Additional well-‐‑conducted epigenetic studies are now warranted to
generate a catalogue of regions that are sensitive to the prenatal
environment and may reflect developmental influences on human disease.

Can  we  develop  epigenomic  biosensors  of  past  exposures?

An important property of epigenomic signatures is that, because they can
be propagated through cell division even in cells with high turnover, they
can persist even after the exposure is removed. In addition, as discussed
above, an individualʼ’s epigenome may also reflect his/her prenatal
environmental exposure experience. Thus, epigenomic profiling of
individuals exposed to environmental pollutants might provide biosensors
or molecular archives of oneʼ’s past or even prenatal environmental
exposures. Using epigenomics, exposure assessment might be brought to
research investigations and preventive settings where repeated collections
of exposure data might be unfeasible or exceedingly expensive. Further
research is needed to establish how rapid are the changes induced by
environmental pollutants, as well as whether they accumulate in response
to repeated or continuous exposure and how long they persist after the
exposure is removed.

What  are  suitable  study  designs  and  approaches  for  environmental

epigenomics?

The field of environmental epigenetics has evolved rapidly in the past
several years. As research applications grow, investigators will be facing
several difficulties and challenges. Some studies have produced
inconsistent results on same pollutants. Several factors may contribute to
the inconsistencies. Epigenetic alterations are tissue specific.221 It is
conceivable that the same environmental pollutant may produce different
epigenetic changes in different tissues, and even within the same tissue on
different cell types. Larger studies with well-‐‑defined exposure information
that allows examining epigenetic changes across different tissues are
needed. Different study design, small sample size and different laboratory
methods may also be major causes for the inconsistency. Replicating
results and identifying the sources of variability across studies is a major
challenge for epigenetic investigations. Because epigenetic markers
change over time, disease outcomes are prone to reverse causation, i.e. an
association between a disease and an epigenetic marker may be
determined by an influence of the disease on the epigenetic patterns,
rather than vice versa.222 Although epigenetic alterations that were found
to be induced by or associated with environmental pollutants were also
found in various diseases, almost no study has examined the sequence of
exposures, epigenetic alterations and diseases.

Longitudinal studies with prospective collection of objective measures of
exposure, biospecimens for epigenetic analyses and preclinical and clinical
disease outcomes are needed to appropriately establish causality. Existing
prospective epidemiology investigations might provide resources for
mapping epigenomic changes in response to specific chemicals. However,
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cohort studies in which biospecimens have been previously collected for
genetic or biochemical studies might pose several challenges. Most
studies have collected biospecimens, such as blood, urine or buccal cells,
which might not necessarily participate in the aetiology of the disease of
interest. Methods of collection and processing (e.g. whole blood vs buffy
coat) might modify the cell types stored, thus potentially impacting on
epigenetic marks. In addition, high-‐‑coverage methods providing high-‐‑
dimensional data on DNA methylation, histone modifications and miRNA
expression are increasingly used in human investigations.

Albeit epigenetic mechanisms have properties that make them ideal
molecular intermediates of environmental effects, the proportion of the
effects of any individual environmental exposure that might be mediated
through epigenetic mechanisms is still undetermined. Epidemiology and
statistical approaches, including well-‐‑designed prospective studies and
advanced statistical methods for causal inference are urgently needed.
Similarly to genomic studies,223 epidemiological causal reasoning in
epigenomics should include careful consideration of knowledge, data,
methods and techniques from multiple disciplines.

The  potential  interactions  between  different  forms  of  epigenetic  modification

Most studies in environmental epigenetics have separately evaluated only
one of the types of the epigenetic marks, i.e. DNA methylation, histone
modifications or miRNA expression. However, epigenetic marks are related
by an intricate series of interactions that may generate a self-‐‑reinforcing
cycle of epigenetic events directed to control gene expression.224 For
instance, histone deacetylation and methylation at specific amino acid
residues contribute to the establishment of DNA methylation patterns.
miRNA expression is controlled by DNA methylation in miRNA encoding
genes, and, in turn, miRNAs have been shown to modify DNA
methylation.225 Future studies that include comprehensive investigations
of multiple epigenetic mechanisms might help elucidate the timing and
participation of DNA methylation, histone modifications and miRNAs to
determine environmental effects on disease development.

Can  epigenomics  be  used  for  prevention?

One major objective of epidemiology investigations is to provide the
groundwork for future preventive interventions. Numerous clinical and
preclinical studies showed that most of the epigenetic changes are
reversible, which offers novel insights to develop new preventive and
therapeutic strategies that might take advantage of molecules that modify
the activities of epigenetic enzymes, such as DNMTs and HDACs, as well
as of the growing field of RNAi therapeutics. Drugs have been designed
and developed that produce functional effects, such as histone acetylation
and DNA hypomethylation that might be used to restore the normal
transcription level of genes. Future epidemiology studies have a unique
opportunity to evaluate whether the effects of environmental exposures on
the epigenome are mitigated by positive changes in lifestyles, or worsened
by the interaction with other risk factors. Future epigenomic research may
provide information for developing preventive strategies, including
exposure reduction, as well as pharmacological, dietary or lifestyle
interventions.
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KEY  MESSAGES

Rapidly growing evidence has linked environmental pollutants with
epigenetic variations, including changes in DNA methylation, histone
modifications and microRNAs.

Some of such epigenetic changes have been associated with various
diseases.
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Further studies of epigenetic mechanisms in disease pathogenesis,
their relationships with environmental exposures and related
pathways are needed for the development of preventive and
therapeutic strategies.

Future epidemiology studies on environmental pollutants and
epigenome face several challenges.

Published by Oxford University Press on behalf of the International Epidemiological
Association © The Author 2011; all rights reserved.
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